Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Exp Clin Cancer Res ; 43(1): 126, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671459

RESUMEN

BACKGROUND: Aberrant alternative splicing (AS) is a pervasive event during colorectal cancer (CRC) development. SF3B3 is a splicing factor component of U2 small nuclear ribonucleoproteins which are crucial for early stages of spliceosome assembly. The role of SF3B3 in CRC remains unknown. METHODS: SF3B3 expression in human CRCs was analyzed using publicly available CRC datasets, immunohistochemistry, qRT-PCR, and western blot. RNA-seq, RNA immunoprecipitation, and lipidomics were performed in SF3B3 knockdown or overexpressing CRC cell lines. CRC cell xenografts, patient-derived xenografts, patient-derived organoids, and orthotopic metastasis mouse models were utilized to determine the in vivo role of SF3B3 in CRC progression and metastasis. RESULTS: SF3B3 was upregulated in CRC samples and associated with poor survival. Inhibition of SF3B3 by RNA silencing suppressed the proliferation and metastasis of CRC cells in vitro and in vivo, characterized by mitochondria injury, increased reactive oxygen species (ROS), and apoptosis. Mechanistically, silencing of SF3B3 increased mTOR exon-skipped splicing, leading to the suppression of lipogenesis via mTOR-SREBF1-FASN signaling. The combination of SF3B3 shRNAs and mTOR inhibitors showed synergistic antitumor activity in patient-derived CRC organoids and xenografts. Importantly, we identified SF3B3 as a critical regulator of mTOR splicing and autophagy in multiple cancers. CONCLUSIONS: Our findings revealed that SF3B3 promoted CRC progression and metastasis by regulating mTOR alternative splicing and SREBF1-FASN-mediated lipogenesis, providing strong evidence to support SF3B3 as a druggable target for CRC therapy.


Asunto(s)
Empalme Alternativo , Neoplasias Colorrectales , Progresión de la Enfermedad , Metástasis de la Neoplasia , Serina-Treonina Quinasas TOR , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ratones , Animales , Serina-Treonina Quinasas TOR/metabolismo , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética , Línea Celular Tumoral , Femenino , Proliferación Celular , Masculino
3.
J Exp Clin Cancer Res ; 43(1): 108, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600610

RESUMEN

Ferroptosis is a newly identified iron-dependent form of death that is becoming increasingly recognized as a promising avenue for cancer therapy. N6-methyladenosine (m6A) is the most abundant reversible methylation modification in mRNA contributing to tumorigenesis. However, the crucial role of m6A modification in regulating ferroptosis during colorectal cancer (CRC) tumorigenesis remains elusive. Herein, we find that m6A modification is increased during ferroptotic cell death and correlates with the decreased m6A demethylase fat mass and obesity-associated protein (FTO) expression. Functionally, we demonstrate that suppressing FTO significantly induces CRC ferroptotic cell death, as well as enhancing CRC cell sensitivity to ferroptosis inducer (Erastin and RSL3) treatment. Mechanistically, high FTO expression increased solute carrier family 7 member 11 (SLC7A11) or glutathione peroxidase 4 (GPX4) expressions in an m6A-YTHDF2 dependent manner, thereby counteracting ferroptotic cell death stress. In addition, we identify Mupirocin as a novel inhibitor of FTO, and Mupirocin induces CRC ferroptosis and inhibits tumor growth. Clinically, the levels of FTO, SLC7A11, and GPX4, are highly correlated expression in CRC tissues. Our findings reveal that FTO protects CRC from ferroptotic cell death in promoting CRC tumorigenesis through triggering SLC7A11/GPX4 expression.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Neoplasias Colorrectales , Mupirocina , Humanos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+ , Carcinogénesis , Muerte Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/tratamiento farmacológico
4.
Pharmacol Res ; 204: 107195, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677532

RESUMEN

Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.

5.
Lung Cancer ; 190: 107541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531154

RESUMEN

OBJECTIVE: Metabolic reprogramming is an important coordinator of tumor development and resistance to therapy, such as the tendency of tumor cells to utilize glycolytic energy rather than oxidative phosphorylation, even under conditions of sufficient oxygen. Therefore, targeting metabolic enzymes is an effective strategy to overcome therapeutic resistance. MATERIALS AND METHODS: We explored the differential expression and growth-promoting function of MDH2 by immunohistochemistry and immunoblotting experiments in lung cancer patients and lung cancer cells. Pentose phosphate pathway-related phenotypes (including ROS levels, NADPH levels, and DNA synthesis) were detected intracellularly, and the interaction of malate and proteinase 6PGD was detected in vitro. In vivo experiments using implanted xenograft mouse models to explore the growth inhibitory effect and pro-chemotherapeutic function of dimethyl malate (DMM) on lung cancer. RESULTS: We found that the expression of malate dehydrogenase (MDH2) in the tricarboxylic acid cycle (TCA cycle) was increased in lung cancer. Biological function enrichment analysis revealed that MDH2 not only promoted oxidative phosphorylation, but also promoted the pentose phosphate pathway (PPP pathway). Mechanistically, it was found that malate, the substrate of MDH2, can bind to the PPP pathway metabolic enzyme 6PGD, inhibit its activity, reduce the generation of NADPH, and block DNA synthesis. More importantly, DMM can improve the sensitivity of lung cancer to the clinical drug cisplatin. CONCLUSION: We have identified malate as a natural inhibitor of 6PGD, which will provide new leads for the development of 6PGD inhibitors. In addition, the metabolic enzyme MDH2 and the metabolite malate may provide a backup option for cells to inhibit their own carcinogenesis, as the accumulated malate targets 6PGD to block the PPP pathway and inhibit cell cycle progression.


Asunto(s)
Neoplasias Pulmonares , Animales , Humanos , Ratones , ADN , Neoplasias Pulmonares/genética , Malatos/farmacología , NADP/metabolismo
6.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326625

RESUMEN

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Asunto(s)
Antineoplásicos , Proliferación Celular , Neoplasias Colorrectales , Depsipéptidos , Compuestos Macrocíclicos , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Depsipéptidos/farmacología , Depsipéptidos/uso terapéutico , Depsipéptidos/química , Depsipéptidos/síntesis química , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167013, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38199515

RESUMEN

Inflammatory bowel disease (IBD) is an incurable and disabling bowel disease driven by multiple risk factors that severely limit patients' quality of life. We integrated the RNA-sequencing data of 1238 IBD patients, and investigated the pathogenesis of IBD by combining transcriptional element prediction analysis and immune-related analysis. Here, we first determined that KIAA1109 is inhibited in IBD patients. The expression of KIAA1109 and NOD2, the key receptor of NOD-like receptors, showed a negative correlation. The NOD-like receptor signaling pathway is activated and exerts transcriptional regulation on the chemokines CXCL1 and CXCL2 through the activation of the transcription factors NFκB and AP1. Analysis of immune infiltration revealed that the expression of chemokines CXCL1 and CXCL2 may regulate the inflammatory response induced by immune cells. These findings suggest that the KIAA1109-NOD2-NFκB/AP1-CXCL1/CXCL2 regulatory axis is the molecular mechanism of IBD pathogenesis, which will provide a new perspective for the diagnosis, treatment and management of IBD patients.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Humanos , Calidad de Vida , Enfermedades Inflamatorias del Intestino/genética , Marcadores Genéticos , Perfilación de la Expresión Génica , Quimiocinas/genética
8.
Ibrain ; 9(2): 133-147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37786553

RESUMEN

Due to the existence of the blood-brain barrier in glioma, traditional drug therapy has a poor therapeutic outcome. Emerging immunotherapy has been shown to have satisfactory therapeutic effects in solid tumors, and it is clinically instructive to explore the possibility of immunotherapy in glioma. We performed a retrospective analysis of RNA-seq data and clinical information in 1027 glioma patients, utilizing machine learning to explore the relationship between tyrosine metabolizing enzymes and clinical characteristics. In addition, we also assessed the role of tyrosine metabolizing enzymes in the immune microenvironment including immune infiltration and immune evasion. Highly expressed tyrosine metabolizing enzymes 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1,2-dioxygenase, and fumarylacetoacetate hydrolase not only promote the malignant phenotype of glioma but are also closely related to poor prognosis. The expression of tyrosine metabolizing enzymes could distinguish the malignancy degree of glioma. More importantly, tyrosine metabolizing enzymes regulate the adaptive immune process in glioma. Mechanistically, multiple metabolic enzymes remodel fumarate metabolism, promote α-ketoglutarate production, induce programmed death-ligand 1 expression, and help glioma evade immune surveillance. Our data suggest that the metabolic subclass driven by tyrosine metabolism provides promising targets for the immunotherapy of glioma.

10.
Expert Opin Ther Targets ; 27(8): 733-743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37571851

RESUMEN

INTRODUCTION: Ovarian cancer (OC) is a gynecological tumor disease, which is usually diagnosed at an advanced stage and has a poor prognosis. It has been established that the glucose metabolism rate of cancer cells is significantly higher than that of normal cells, and the pentose phosphate pathway (PPP) is an important branch pathway for glucose metabolism. Glucose-6-phosphate dehydrogenase (G6PD) is the key rate-limiting enzyme in the PPP, which plays an important role in the initiation and development of cancer (such as OC), and has been considered as a promisinganti-cancer target. AREAS COVERED: In this review, based on the structure and biological function of G6PD, recent research on the roles of G6PD in the progression, metastasis, and chemoresistance of OC are summarized and accompanied by proposed molecular mechanisms, which may provide a systematic understanding of targeting G6PD for the treatment of patients with OC. EXPERT OPINION: Accumulating evidence demonstrates that G6PD is a promising target of cancer. The development of G6PD inhibitors for cancer treatment merits broad application prospects.


Asunto(s)
Glucosafosfato Deshidrogenasa , Neoplasias Ováricas , Humanos , Femenino , Glucosafosfato Deshidrogenasa/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Vía de Pentosa Fosfato , Glucosa/metabolismo
11.
Int J Biol Macromol ; 243: 125196, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285890

RESUMEN

The cells are like a highly industrialized and urbanized city, filled with numerous biological macromolecules and metabolites, forming a crowded environment. While, the cells have compartmentalized organelles to complete different biological processes efficiently and orderly. However, membraneless organelles are more dynamic and adaptable for transient events including signal transduction and molecular interactions. Liquid-liquid phase separation (LLPS) is a mechanism that is widespread in which macromolecules form condensates without membranes to exert biological functions in crowded environments. Due to the lack of deep understanding of phase-separated proteins, platforms exploring phase-separated proteins by high-throughput methods is lacking. Bioinformatics has its unique properties and has proven to be a great impetus in multiple fields. Here, We integrated the amino acid sequence, protein structure, and cellular localization, then developed a workflow for screening phase-separated proteins and identified a novel cell cycle-related phase separation protein, serine/arginine-rich splicing factor 2 (SRSF2). In conclusion, we developed a workflow as a useful resource for predicting phase-separated proteins based on multi-prediction tool, which has an important contribution to the further identification of phase-separated proteins and the development strategies for treating disease.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Secuencia de Aminoácidos , Proteínas Intrínsecamente Desordenadas/química , Orgánulos/metabolismo
12.
MedComm (2020) ; 4(2): e245, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36999124

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) is a major type II enzyme responsible for symmetric dimethylation of arginine (SDMA), and plays predominantly roles in human cancers, including in ovarian cancer. However, the exactly roles and underlying mechanisms of PRMT5 contributing to the progression of ovarian cancer mediated by reprogramming cell metabolism remain largely elusive. Here, we report that PRMT5 is highly expressed and correlates with poor survival in ovarian cancer. Knockdown or pharmaceutical inhibition of PRMT5 is sufficient to decrease glycolysis flux, attenuate tumor growth, and enhance the antitumor effect of Taxol. Mechanistically, we find that PRMT5 symmetrically dimethylates alpha-enolase (ENO1) at arginine 9 to promotes active ENO1 dimer formation, which increases glycolysis flux and accelerates tumor growth. Moreover, PRMT5 signals high glucose to increase the methylation modification of ENO1. Together, our data reveal a novel role of PRMT5 in promoting ovarian cancer growth by controlling glycolysis flux mediated by methylating ENO1, and highlights that PRMT5 may represent a promising therapeutic target for treating ovarian cancer.

13.
RSC Med Chem ; 14(2): 299-312, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36846368

RESUMEN

Nannocystins are a family of 21-membered cyclodepsipeptides with excellent anticancer activity. However, their macrocyclic architecture poses a significant challenge to structure modification. Herein, this issue is addressed by leveraging the strategy of post-macrocyclization diversification. In particular, a novel serine-incorporating nannocystin was designed so that its appending hydroxyl group could diversify into a wide variety of side chain analogues. Such effort facilitated not only structure-activity correlation at the subdomain of interest, but also the development of a macrocyclic coumarin-labeled fluorescence probe. Uptake experiments indicated good cell permeability of the probe, and endoplasmic reticulum was identified as its subcellular localization site.

14.
Acta Pharm Sin B ; 13(1): 157-173, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815049

RESUMEN

Metabolic reprogramming is a hallmark of cancer, including lung cancer. However, the exact underlying mechanism and therapeutic potential are largely unknown. Here we report that protein arginine methyltransferase 6 (PRMT6) is highly expressed in lung cancer and is required for cell metabolism, tumorigenicity, and cisplatin response of lung cancer. PRMT6 regulated the oxidative pentose phosphate pathway (PPP) flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phospho-gluconate dehydrogenase (6PGD) and α-enolase (ENO1). Furthermore, PRMT6 methylated R324 of 6PGD to enhancing its activity; while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate (2-PG) binding to ENO1, respectively. Lastly, targeting PRMT6 blocked the oxidative PPP flux, glycolysis pathway, and tumor growth, as well as enhanced the anti-tumor effects of cisplatin in lung cancer. Together, this study demonstrates that PRMT6 acts as a post-translational modification (PTM) regulator of glucose metabolism, which leads to the pathogenesis of lung cancer. It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy.

15.
Physiol Mol Biol Plants ; 28(9): 1737-1751, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36387976

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors (TFs) are one of the largest TF families in plant species, and they play important roles in plant growth, development and stress responses. The present study systematically identified members of the cauliflower (Brassica oleracea L.) bHLH gene family based on genomic data. Analysis of bHLH family gene numbers, evolution, collinearity, gene structures and motifs indicated that cauliflower contained 256 bHLH family genes distributed on 10 chromosomes. Most of these genes have been localized in the nucleus, and they were divided into 18 subgroups which have been relatively conserved during evolution. Promoter analysis showed that most cis-acting elements were related to MeJA and ABA. Expression analysis suggested that 14 bHLH genes may be involved in the transformation of cauliflower curd from white to purple. An expression analysis of these 14 genes in FQ136 material was performed using qRT-PCR, and 9 bHLH genes (BobHLH1, 14, 58, 61, 63, 84, 231, 239 and 243) showed significantly increased or decreased expression in cauliflower from white to purple, which suggests that these 9 genes play important roles in the accumulation of anthocyanins in cauliflower. The coexpression network of these 9 genes and anthocyanin synthesis-related key genes was analyzed using weighted gene coexpression network analysis (WGCNA). In conclusion, our observations suggested that the bHLH gene family plays an important role in the accumulation of anthocyanins in cauliflower and provide an important theoretical basis for further research on the functions of the bHLH gene family and the molecular mechanism of cauliflower coloration. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01238-9.

16.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36232604

RESUMEN

Previous studies have shown that phosphoinositide 3-kinase enhancer-activating Akt (PIKE-A) is involved in the regulation of several biological processes in cancer. In our previous study, we demonstrated a crucial function of PIKE-A in cancer energy metabolism by regulating pentose phosphate pathway (PPP) flux. However, whether PIKE-A regulates energy metabolism through affecting mitochondrial changes are poorly understood. In the present study, we show that PIKE-A promotes mitochondrial membrane potential, leading to increasing proliferation of glioblastoma cell. Mechanistically, PIKE-A affects the expression of respiratory chain complex Ⅱ succinate dehydrogenase A (SDHA), mediated by regulating the axis of STAT3/FTO. Taken together, these results revealed that inhibition of PIKE-A reduced STAT3/FTO/SDHA expression, leading to the suppression of mitochondrial function. Thus, our findings suggest the PIKE-A/STAT3/FTO/SDHA axis as promising anti-cancer treatment targets.


Asunto(s)
Glioblastoma , Proteínas Proto-Oncogénicas c-akt , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Succinato Deshidrogenasa/metabolismo
17.
Cancers (Basel) ; 14(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35884433

RESUMEN

p53 is a common tumor suppressor, and its mutation drives tumorigenesis. What is more, p53 mutations have also been reported to be indicative of poor prognosis in lung cancer, but the detailed mechanism has not been elucidated. In this study, we found that DNA primase subunit 2 (PRIM2) had a high expression level and associated with poor prognosis in lung cancer. Furthermore, we found that PRIM2 expression was abnormally increased in lung cancer cells with p53 mutation or altered the p53/RB pathway based on database. We also verified that PRIM2 expression was elevated by mutation or deletion of p53 in lung cancer cell lines. Lastly, silence p53 increased the expression of RPIM2. Thus, these data suggest that PRIM2 is a cancer-promoting factor which is regulated by the p53/RB pathway. The p53 tumor-suppressor gene integrates numerous signals that control cell proliferation, cell cycle, and cell death; and the p53/RB pathway determines the cellular localization of transcription factor E2F, which regulates the expression of downstream targets. Next, we explored the role of PRIM2 in lung cancer and found that knockdown of PRIM2 induced cell cycle arrest, increased DNA damage, and increased cell senescence, leading to decreased lung cancer cell proliferation. Lastly, the positive correlation between PRIM2 and E2F/CDK also indicated that PRIM2 was involved in promoting cell cycle mediated by p53/RB pathway. These results confirmed that the expression of PRIM2 is regulated by the p53/RB pathway in lung cancer cells, promotes DNA replication and mismatch repair, and activates the cell cycle. Overall, we found that frequent p53 mutations increased PRIM2 expression, activated the cell cycle, and promoted lung cancer progression.

18.
Front Pharmacol ; 13: 934729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814224

RESUMEN

Network pharmacology, as a novel way using bioinformatics to explore drug targets and interactions in cancer, broadens our understanding of drug action, thereby facilitating drug discovery. Here, we utilized network pharmacology to explore the role and mechanism by which cinobufotalin functions in colon adenocarcinoma (COAD). We found that cinobufotalin represses the growth and proliferation of colon cancer cells, and integrated public databases for targets reported to be associated with COAD, together with those predicted to be targets of cinobufotalin. Targets overlapped between COAD-associated proteins and cinobufotalin target proteins were used to filter candidate targets of cinobufotalin in COAD. The following proteins were thought to occupy a key position in COAD-cinobufotalin target networks: SRC, PIK3R1, MAPK1, PIK3CA, HSP90AA1, CTNNB1, GRB2, RHO1, PTPN11, and EGFR. The networks regulated by cinobufotalin were involved mainly in extracellular signal stimulation and transduction, including MAPK signaling pathway, PI3K-AKT signaling pathway, and JAK-STAT signaling pathway. Besides, transcriptome sequencing results also indicated that cinobufotalin inhibits the response of colon cancer cells to extracellular stimulation and promotes cell apoptosis. Molecular docking results showed that cinobufotalin matches in the pocket of the top candidate cinobufotalin target proteins (SRC, PIK3R1, MAPK1 and PIK3CA). These findings demonstrate cinobufotalin can be developed as potential anti-cancer therapeutics.

19.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35562974

RESUMEN

Kidney renal clear cell carcinoma (KIRC) with poor prognosis is the main histological subtype of renal cell carcinoma, accounting for more than 80% of patients. Most patients are diagnosed at an advanced stage due to being asymptomatic early on. Advanced KIRC has an extremely poor prognosis due to its inherent resistance to radiotherapy and chemotherapy. Therefore, a comprehensive understanding of the molecular mechanisms of KIRC and the development of effective early diagnostic and therapeutic strategies is urgently needed. In this study, we aimed to identify the prognosis-related biomarker and analyzed its relationship with tumor progression. Metabolic changes are an important feature of kidney cancer, where the reduction of fumarate allows us to target the tyrosine metabolic pathway. The homogentisate 1,2-dioxygenase (HGD) and glutathione S-transferase zeta 1 (GSTZ1) related with prognosis of KIRC was identified through bioinformatics analysis based on The Cancer Genome Atlas (TCGA) databases. Mechanistically, we found that decreased HGD and GSTZ1 promote aerobic glycolysis in KIRC, coordinate the balance of amino acid metabolism and energy metabolism in tumor cells, and ultimately activate the tumor cell cycle and tumor progression. In summary, we identified the tyrosine metabolizing enzymes HGD and GSTZ1 as biomarkers of KIRC, which will further the understanding of the tumor metabolism profile, provide novel strategies and theoretical support for diagnosing and treating KIRC and as referential for future clinical research.


Asunto(s)
Carcinoma de Células Renales , Glutatión Transferasa , Homogentisato 1,2-Dioxigenasa , Neoplasias Renales , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Dioxigenasas/sangre , Dioxigenasas/metabolismo , Femenino , Glutatión Transferasa/sangre , Glutatión Transferasa/metabolismo , Homogentisato 1,2-Dioxigenasa/sangre , Homogentisato 1,2-Dioxigenasa/metabolismo , Humanos , Riñón/metabolismo , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Masculino , Tirosina/metabolismo
20.
Biochem Pharmacol ; 200: 115037, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35427571

RESUMEN

Accumulating evidence has supported that targeting oxidative stress and metabolic alterations of cancer is an effective strategy to combat cancer. We previously reported that Dimethylaminomicheliolide (DMAMCL) and its active metabolite micheliolide (MCL) can cause oxidative stress and cell death in leukemia and glioblastoma. However, the detailed mechanism underlying MCL or DMAMCL triggered oxidative stress remains elusive. Herein, using leukemia HL60 cells and glioblastoma U118MG cells as models, we found that MCL-induced oxidative stress is mainly mediated by reduced glutathione (GSH). Overproduced reactive oxygen species (ROS) can lead to oxidative damage to mitochondrial, impairing the ability of the tricarboxylic acid (TCA) cycle and causing dysfunction of mitochondrial respiratory chain. On the other hand, the depletion of GSH activates GSH biosynthesis pathway and has possibility to give rise to more GSH to scavenge ROS in cancer cells. Targeting this redox and metabolic circuit, we identified L-buthionine sulfoximine (BSO), an inhibitor in GSH biosynthesis, as an agent that can enhance MCL regimen to inhibit GSH compensatory event and thereby further facilitate cancer cell oxidative stress. Together, these results illustrate that targeting redox and metabolic pathway by MCL/DMAMCL combination with BSO is a potent therapeutic intervention for the treatments of glioblastoma and acute-myelocytic leukemia.


Asunto(s)
Glioblastoma , Leucemia , Apoptosis , Butionina Sulfoximina/farmacología , Glioblastoma/tratamiento farmacológico , Glutatión/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos de Guayano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...